

Pericolosità idraulica fluviale in uno scenario di cambiamento climatico: il caso del fiume Misa

Proff. Maurizio Brocchini e Giovanna Darvini

UNIVERSITA' POLITECNICA DELLE MARCHE

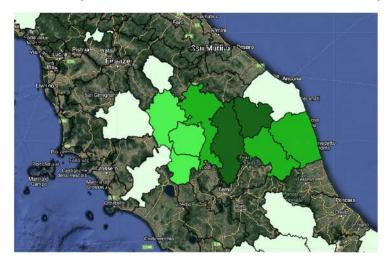
SOMMARIO

- ALCUNI EVENTI ALLUVIONALI
- L'EVENTO DEL 15-16/09/2022
- CONFRONTO CON EVENTI PRECEDENTI
- UN FIUME A CARATTERE TORRENTIZIO
- CRITICITÀ VERE E PRESUNTE
- CONCLUSIONI

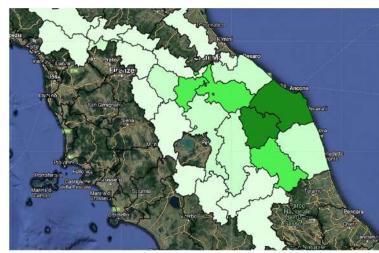
EVENTI ALLUVIONALI

- Si discutono in maniera comparativa alcuni eventi alluvionali:
- Agosto 1976: alluvione da sormonto arginale da zona Cannella-Vallone fino a centro storico con rigurgito sistema fognario (1 morto);
- Maggio 2014: alluvione da rottura arginale presso Bettolelle, con allagamento di Borgo Bicchia, e destra idraulica fino al mare (3 morti, 180MEuro di danni);
- <u>Dicembre 2021:</u> piena al limite di esondazione, unica misura di portata;
- <u>Settembre 2022:</u> alluvione da sormonto e rottura arginale (12 morti, 1 disperso, ?000MEuro di danni).

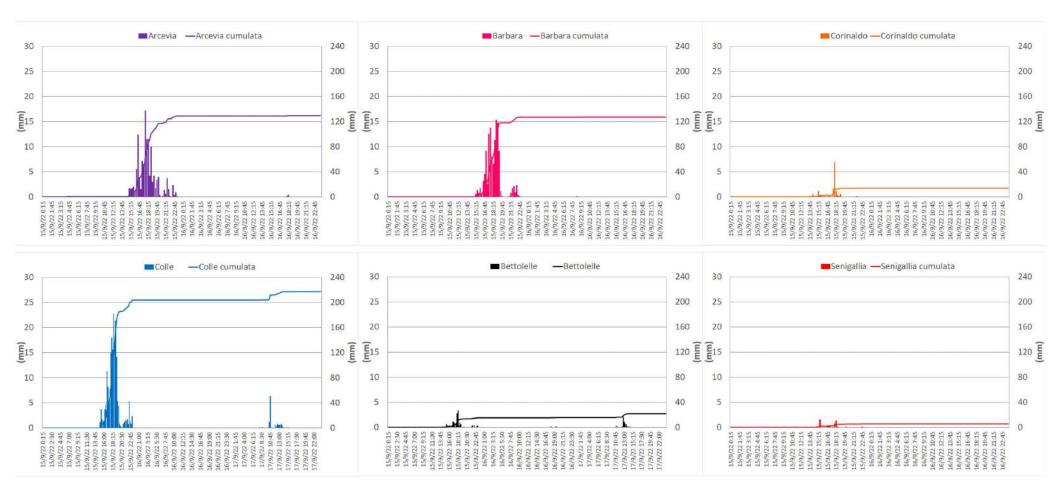
EVENTO DEL 15-16/09/2022 – LE PIOGGE


• Riflettività radar (intensità segnale radar riflesso • dai sistemi di nuvole) osservata ore 17:00 del 15/09/2022: misura indiretta della precipitazione.

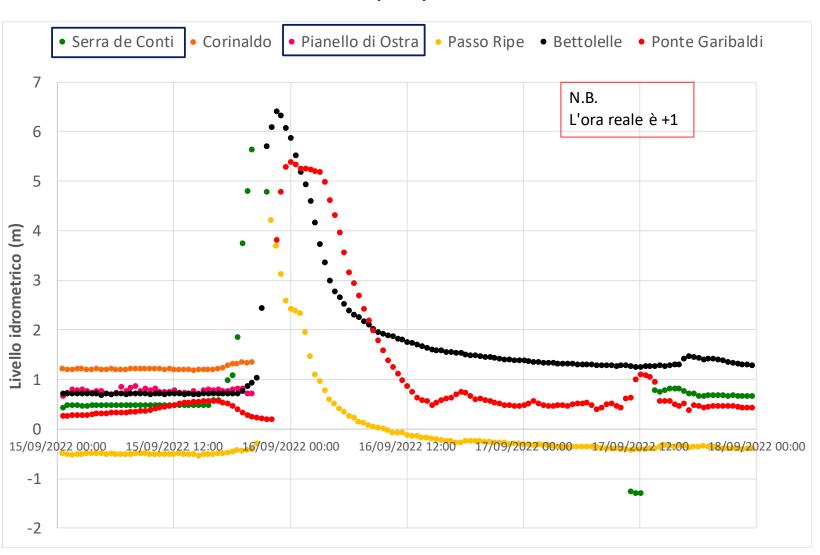
Precipitazione <u>cumulata osservata</u>



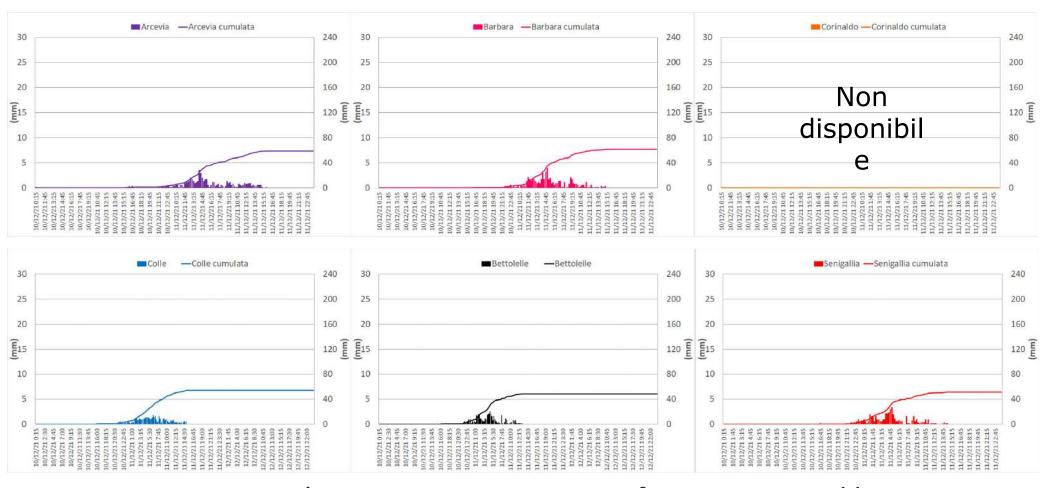
Precipitazione <u>cumulata da modelli numerici</u>: COSMO-21 (sinistra) e WRF Italia (destra). Nessuno dei 2 modelli ha previsto la corretta intensità di precipitazione. **Cortesia di Fondazione CIMA**



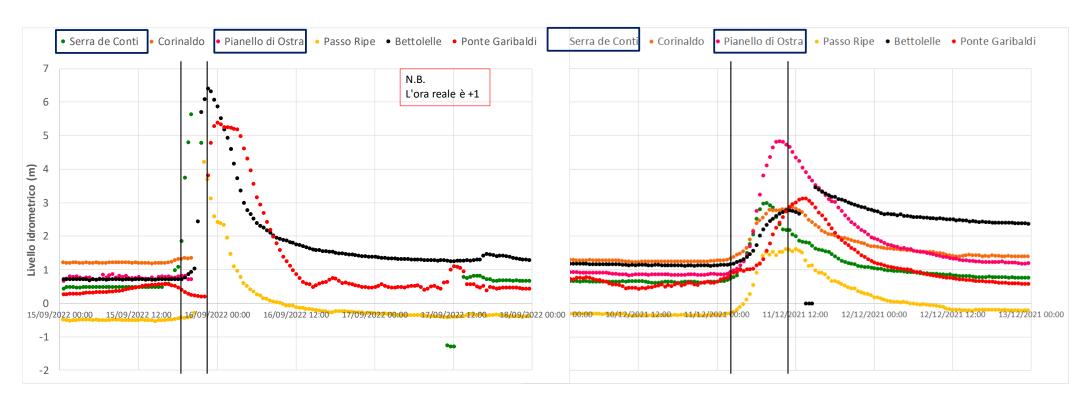
EVENTO DEL 15-16/09/2022 – LE PIOGGE


PRECIPITAZIONE (mm) REGISTRATA AI PLUVIOGRAFI 15-16/09/2022

La precipitazione si è scaricata quasi esclusivamente nella parte di monte del bacino.


EVENTO DEL 15-16/09/2022 – I LIVELLI

LIVELLO IDROMETRICO (m) REGISTRATO AGLI IDROMETRI 15-17/09/2022


EVENTO DEL 10-12/12/2021 – LE PIOGGE

PRECIPITAZIONE (mm) REGISTRATA AI PLUVIOGRAFI 10-12/12/2021

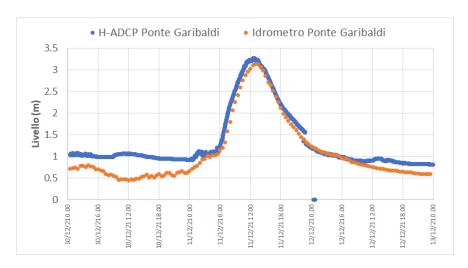
La precipitazione si è scaricata in maniera uniforme su tutto il bacino.

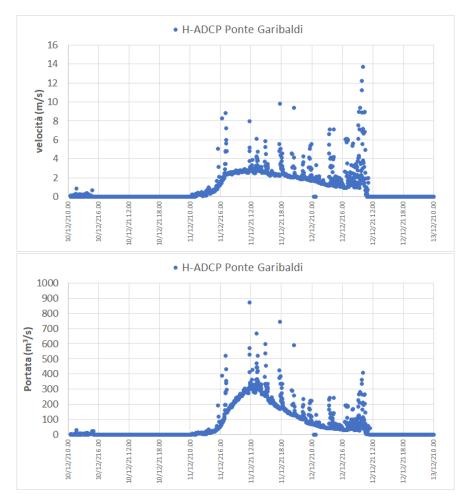
I LIVELLI A CONFRONTO

LIVELLO IDROMETRICO (m) 15-16/09/2022 Livello di magra->picco in 4 ore LIVELLO IDROMETRICO (m) 10-12/12/2021 Livello di magra->picco in 9 ore

EVENTO DEL 10-12/12/2021 – LA PORTATA

MONITORAGGIO A PONTE GARIBALDI




H-ADCP progetto MORSE dal 2018

EVENTO DEL 10-12/12/2021 – LA PORTATA

LIVELLO IDROMETRICO (m) REGISTRATO DALLA SONDA H-ADCP 10-12/12/2021

EFFETTI A CONFRONTO – I PONTI

PONTE GARIBALDI

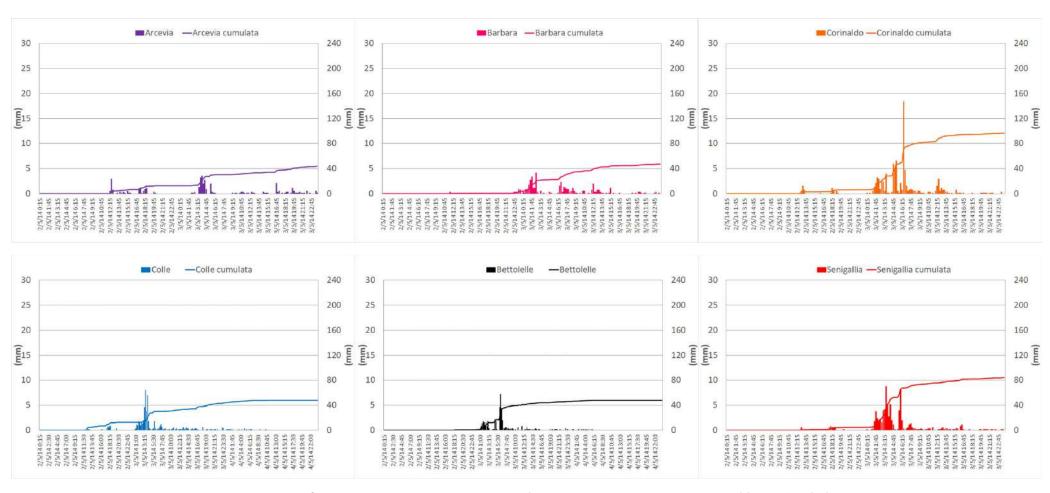
11/12/2021

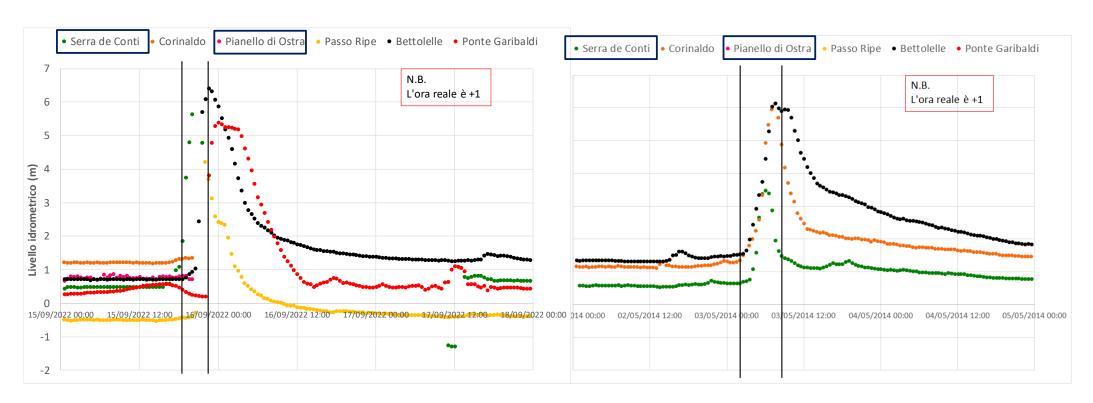
15-16/09/2022

EFFETTI A CONFRONTO – I PONTI

PONTE FERROVIA

11/12/2021


15-16/09/2022


EVENTO DEL 02-04/05/2014 – LE PIOGGE

PRECIPITAZIONE (mm) REGISTRATA AI PLUVIOGRAFI 02-04/05/2014

La precipitazione si è scaricata prevalentemente a valle del bacino.

I LIVELLI A CONFRONTO

LIVELLO IDROMETRICO (m) 15-16/09/2022 Livello di magra->picco in 4 ore LIVELLO IDROMETRICO (m) 02-05/05/2014 Livello di magra->picco in 6 ore

UN FIUME A CARATTERE TORRENTIZIO

STIMA DELLA VELOCITA' DEL PICCO DELL'IDROGRAMMA

			Misa			Nevola	
	Serra dei Conti	Pianello di Ostra	Serra dei Conti	Bettolelle Ponte	Serra dei Conti	Corinaldo	
	Pianello di Ostra	Bettolelle	Bettolelle	Garibaldi	Ponte Garibaldi	Passo Ripe	
distanza (km)	15	8.4	23.4	9.1	32.5	4.9	
tempo tra i due							
picchi (h)			2.5	2	4.5		2022
velocità (m/s)			2.6	1.3	2.0		
velocità (km/h)			9.4	4.6	7.2		
tempo tra i due							
picchi (h)			2		4.5		2014
velocità (m/s)			3.3		2.0		
velocità (km/h)			11.7		7.2		
tempo tra i due							
picchi (h)	2	1	3	2.5	5.5	0.5	2021
velocità (m/s)	2.1	2.3	2.2	1.0	1.6	2.7	
velocità (km/h)	7.5	8.4	7.8	3.6	5.9	9.8	
			9.6	4.1	6.8		

• Elevata velocità di propagazione dell'onda di piena;

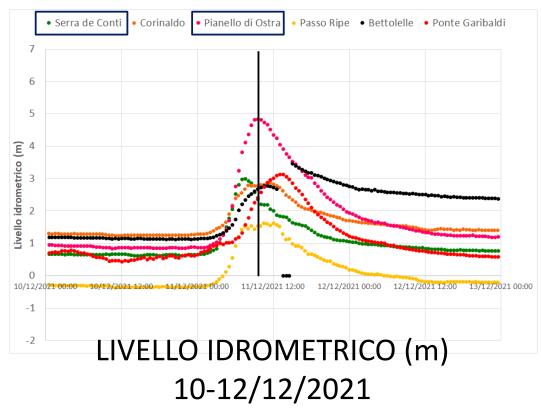
UN FIUME A CARATTERE TORRENTIZIO

STIMA DELLA VELOCITA' DEL PICCO DELL'IDROGRAMMA

			Misa			Nevola	
	Serra dei Conti	Pianello di Ostra	Serra dei Conti	Bettolelle Ponte	Serra dei Conti	Corinaldo	
	Pianello di Ostra	Bettolelle	Bettolelle	Garibaldi	Ponte Garibaldi	Passo Ripe	
distanza (km)	15	8.4	23.4	9.1	32.5	4.9	
tempo tra i due							
picchi (h)			2.5	2	4.5		2022
velocità (m/s)			2.6	1.3	2.0		
velocità (km/h)			9.4	4.6	7.2		
tempo tra i due							
picchi (h)			2		4.5		2014
velocità (m/s)			3.3		2.0		
velocità (km/h)			11.7		7.2		
tempo tra i due							
picchi (h)	2	1	3	2.5	5.5	0.5	2021
velocità (m/s)	2.1	2.3	2.2	1.0	1.6	2.7	
velocità (km/h)	7.5	8.4	7.8	3.6	5.9	9.8	
			9.6	4.1	6.8		

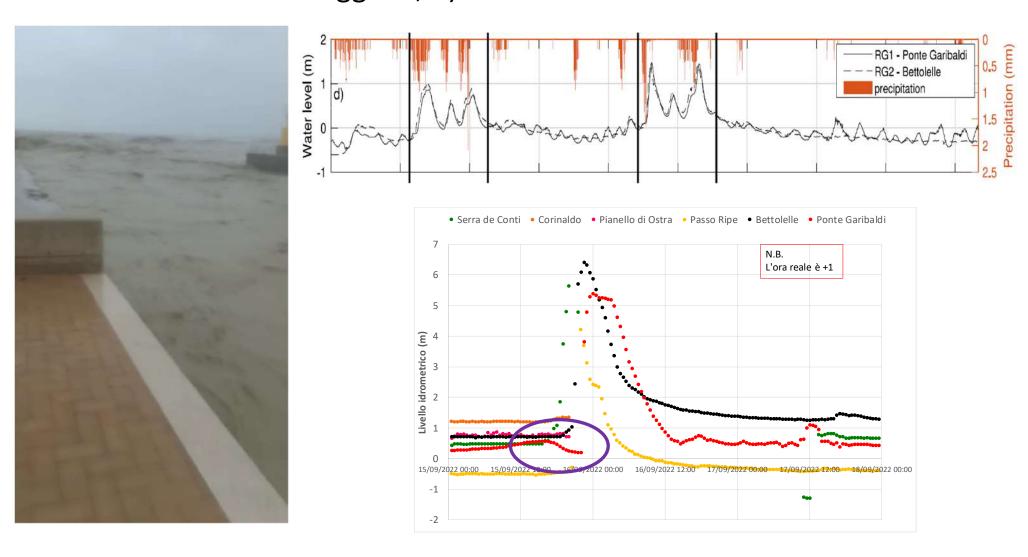
- Elevata velocità di propagazione dell'onda di piena;
- Dimezzamento di velocità da Bettolelle a valle (cambio pendenza fondo);

UN FIUME A CARATTERE TORRENTIZIO


STIMA DELLA VELOCITA' DEL PICCO DELL'IDROGRAMMA

			Misa			Nevola	
	Serra dei Conti	Pianello di Ostra	Serra dei Conti	Bettolelle Ponte	Serra dei Conti	Corinaldo	
	Pianello di Ostra	Bettolelle	Bettolelle	Garibaldi	Ponte Garibaldi	Passo Ripe	
distanza (km)	15	8.4	23.4	9.1	32.5	4.9	
tempo tra i due							
picchi (h)			2.5	2	4.5		2022
velocità (m/s)			2.6	1.3	2.0		
velocità (km/h)			9.4	4.6	7.2		
tempo tra i due							
picchi (h)			2		4.5		2014
velocità (m/s)			3.3		2.0		
velocità (km/h)			11.7		7.2		
tempo tra i due							
picchi (h)	2	1	3	2.5	5.5	0.5	2021
velocità (m/s)	2.1	2.3	2.2	1.0	1.6	2.7	
velocità (km/h)	7.5	8.4	7.8	3.6	5.9	9.8	
			9.6	4.1	6.8		

- Elevata velocità di propagazione dell'onda di piena;
- Dimezzamento di velocità da Bettolelle a valle (cambio pendenza fondo);
- Evento del 2022 con maggior portata ma più lento di quello del 2014?!


CRITICITA' VERE – SINCRONIA MISA-NEVOLA

- Al fiume Misa contribuisce in maniera sostanziale l'affluente Nevola, che evolve nella parte a Nord del bacino;
- Se i <u>picchi di piena risultano in fase</u> alle stazioni di valle dei 2 rami (Pianello per Misa e Passo di Ripe per Nevola), la portata complessiva a valle (Bettolelle) può superare la portata critica per l'esondazione;

CRITICITA' VERE – SINCRONIA FIUME-MARE

Anche se il fiume Misa sfocia in un ambiente micromareale, il suo deflusso può essere rallentato da: a) ingorgo da vento che sospinge acqua dal largo a costa durante una mareggiata; b) marea entrante.

CRITICITA' VERE – DETRITI E LUCI DEI PONTI

Il passaggio attraverso i ponti è cruciale per un deflusso regolare. Nel caso di piene il flusso è spesso ostacolato da detriti vegetali che possono dallo provenire o sradicamento di alberi e arbusti (evento naturale) o dal trasporto di vegetazione tagliata durante le operazioni di manutenzione e non rimossa (evento da incuria umana). In ogni caso, i ponti, soprattutto di recente esecuzione, dovrebbero essere progettati tenendo conto della cosa.

CRITICITA' VERE – LE ARGINATURE

Le arginature, sia in terra che in muratura, richiedono una manutenzione periodica, venuta a mancare negli ultimi decenni.

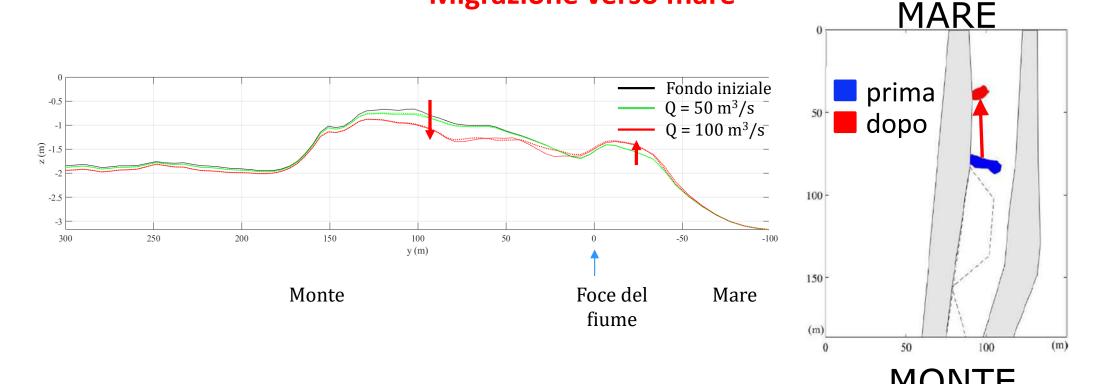
I meccanismi di rottura degli argini in terra includono il <u>sormonto, la filtrazione e l'erosione localizzata</u> (anche a causa di roditori) e la rottura è più probabile nelle regioni <u>ad alta curvatura dell'asse</u> del fiume.

Gli argini in muratura, in <u>assenza</u> di adeguate fondazioni, possono essere scalzati al piede, mentre le <u>fessurazioni</u> determinano un indebolimento della muratura.

METODOLOGIA

- Uso di immagini da stazione di video-monitoraggio (SGS, <u>Home |</u> <u>MORSE Project (univpm.it)</u>)
- Correlazione con forzanti che agiscono nell'area estuarina
- Simulazioni numeriche Delft3D per comprendere il ruolo delle singole forzanti sull'evoluzione della barra

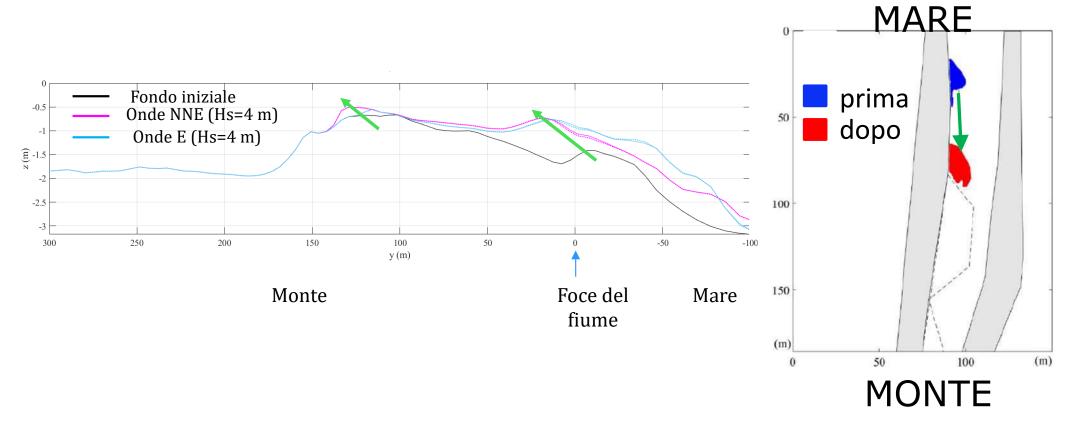
Barra alla foce del fiume Misa



Granulometria:

Codice	P1		P2		P3			P4			P5			P6				
Cource	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3
Profondità	0	0.5	1	0	0.5	1	0	0.5	1	0	0.5	1	0	0.5	1	0	0.5	1
da - a	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0
	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
% Ghiaia	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	32	< 0.1	< 0.1	< 0.1	69	40	26
% Sabbia	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	34	< 0.1	12	58	42	9	30	44	71
% Limo	55	51	48	51	49	56	62	54	55	49	58	38	34	48	65	0.7	13	2
% Argilla	45	49	52	49	51	44	38	46	45	17	42	18	8	10	26	0.4	3.4	0.9
% Frazione pelitica (<63 um)	100	100	100	100	100	100	100	100	100	66	100	56	42	58	91	1	16	3

EFFETTO DI UNA PORTATA FLUVIALE


- Erosione della barra
- Migrazione verso mare

Una portata comparabile con la portata associata a Tr=1 anno causa uno spostamento di sedimenti da monte verso valle di circa 4 volte la larghezza del fiume.

EFFETTO DELLE ONDE

Migrazione verso monte della barra

Onde associabili ad Tr=5anni causano spostamenti della barra di circa 1 volta la larghezza del fiume.

Questo conferma il dominio dell'azione fluviale su quella ondosa.

Questo effetto è evidente a valle di ogni piena, che espelle a mare gran parte del sedimento della barra.

La **naturale espulsione** a mare, forzata dalle piene e parte del ciclo naturale per cui la barra si ricarica nei periodi di magra (che possono durare anche molti anni), potrebbe essere **facilitata con dragaggi periodici**, senza la necessità di opere rigide (es. prolungamento del molo di levante).

CONCLUSIONI

- Il cambiamento climatico sta forzando eventi piovosi sempre più impulsivi;
- E' necessario ripensare alla definizione degli eventi estremi;
- Per fiumi a carattere torrentizio è necessario ripensare alle modalità di allerta (tempi di risposta brevissimi);
- E' essenziale un'adeguata educazione della popolazione alla risposta all'evento;
- E' essenziale riconoscere la condizione di pericolosità per strutture posizionate in aree esondabili (arretramento), soprattutto per città (Senigallia) costruite nel letto di un fiume e con sezioni di deflusso ridotte;
- Le azioni preventive devono essere basate su corrette conoscenze dei fenomeni - la mitigazione deve essere fatta a monte degli abitati e non a valle - e basate su monitoraggio (adeguamento rete di sensori) e modellazione (modello idrologico-idraulico per ogni bacino);
- Se possibile, riduzione della burocrazia e azione coordinata degli enti.